Abstract

Rod-shape particles have been a good drug carrier due to the long circulatory time, tumor accumulation and high cellular uptake in body. Acid-hydrolysed nanocrystalline cellulose (NCC) from empty fruit bunch exhibited a width of 13–30nm and a length of 150–360nm in rod-shape structure. NCC holds good potential as a bio-based drug carrier owing to its biodegradability and biocompatibility. Fourier-transform infrared spectroscopy results confirmed the binding of curcumin onto the NCC modified with tannic acid (TA) and decylamine (DA). TA-DA modification rendered NCC with a higher level of hydrophobicity, as evidenced by a substantial increase in contact angle from 45° to 73°. The modified NCC had the curcumin-binding efficiency in the range of 95–99%, which is at least twofold higher than the unmodified NCC at any curcumin concentration tested. This remarkable curcumin-binding effciency was comparable to that of commercialized NCC from wood-based origin. This work suggests NCC as a superior and sustainable drug carrier, while TA-DA modification is a promising approach to alter the surface property of NCC for an efficient binding of curcumin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call