Abstract

Swift heavy ion irradiation (SHI) is used to modify the structural and gas sensing properties of Hydroxyapatite (HAp) thick films. The HAp thick films, prepared by screen printing technique, are irradiated with a variable fluence (3×10 10 to 3×10 13 ions/cm 2) of Ag 7+ ions of 100 MeV energy. XRD shows gradual change in crystallinity of the matrix with increase in ion fluence. Atomic force microscopy reveals the agglomeration of grains with pronounced cluster type structure at relatively higher ion fluence. For confirmation of efficient gas sensing of pristine and irradiated HAp thick films, repeatability and reproducibility tests are conducted in a carbon dioxide atmosphere. The parameters responsible for device applications such as, gas uptake capacity, response to test gas and recovery time of HAp film sensor are also investigated. SHI modified HAp films show the maximum enhancement in the gas response and also in increased gas uptake capacity for the fluence 3×10 11 ions/cm 2. Moreover, SHI has resulted in modification of gas response and recovery time for CO 2 gas. The remarkable observation is to note that SHI irradiation improves the sensor characteristics of the HAp films without affecting the working temperature (165 °C) of gas sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.