Abstract

The removal process of Hg(II) and MeHg(II) from aqueous solution by surface modified agrowaste biomass (AWB) was studied. The surface modifications were carried out by methods of mercerization, oxidative delignification, acid treatment, and biological treatment using laccase. The modifications promoted disruption of AWB structural surfaces and thus changed their physical and chemical properties as well as Hg(II) and MeHg(II) adsorption performances. The adsorption efficiency of Hg(II) was higher than MeHg(II) for all AWB adsorbents. The adsorption capacity of Hg(II) and MeHg(II) for AWB-Pure was 0.97 and 0.17 mmol/g, respectively. The highest adsorption capacity of Hg(II) and MeHg(II) was respectively observed for the AWB-Laccase (0.98 ± 0.04 mmol/g) and AWB-NaOCl/NaOH (0.40 ± 0.07 mmol/g). The adsorption selectivity of modified AWB adsorbents towards Hg(II) and MeHg(II) studied using oilfield produced water and natural gas condensate samples was found to be lower as compared to AWB-Pure, but higher selectivity was observed for other metals. The renewability studies show that the pure and modified AWB adsorbents had similar adsorption performance characteristics. The high Hg(II) adsorption efficiency (η > 90 %) was observed up to the third adsorption cycle, while for the MeHg(II), it decreased after each adsorption–desorption cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.