Abstract

AbstractThe catechol functional group of dopamine (3,4‐dihydroxyphenethylamine) has the ability to form strong adhesive bonds to inorganic and organic surfaces in aqueous environments. In this study, novel adhesive polyaspartamides containing catechol pendant groups were synthesized from polysuccinimide through successive aminolysis reactions with quantitative dopamine and ethylenediamine. The adhesion and crosslinking of dopamine‐modified polyaspartamide in aqueous alkaline media was used successfully to modify the surface of various materials (including synthetic polymers, metals, metal oxides, ceramics) using a simple immersion method. Contact angle measurements, SEM and X‐ray photoelectron spectroscopy of the modified surfaces were used to verify the surface coating on a variety of materials with very different inherent wetting properties. These novel biocompatible polymers have potential industrial and biomedical applications as adhesives or coating materials for functional surface modification. Copyright © 2011 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.