Abstract

The following paper is a review of the recent published literature on these three techniques for heat transfer augmentation. With global trend of the miniaturization of today’s systems and the rapid development due to innovative equipment on a rise, the associated heat generation rates are increasing. As a result, the need to develop techniques to achieve faster and efficient cooling are also increasing., Heat transfer by impinging jets poses a good and economical solution to this problem since, among all the processes used for heat removal, heat transfer by impinging jets have the highest rates associated with them. Although, the heat generation rates have increased over period of time, jet impingement is in the industrial use for quite a long time and is still relevant for the field. This is because overtime the impingement heat transfer effectiveness has been improved by various innovations. Innovations such as surface modifi-cations, use of flow control techniques etc. The modifications reported had seen actual use of them in industries, thus bringing more interest of the researchers towards them. The need to achieve higher heat transfer rates and efficient working of the systems is still seeing numerous interactions pertaining to surface modifications integrated with jet impingement reported on them. Primarily, the use of various types of extended surfaces such as pin fins, plate fins, ribs etc., inducing the roughness elements on the surface by employing dimples, protrusions etc., applying specific surface coatings found a plethora of research work reported on them. For any work, it is necessary to study these modifications and their interactions in details. This paper thus presents the above stated three surface modifications in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.