Abstract

AbstractThe poor stability of CsPbX3 (X = Cl, Br, I) perovskite quantum dots (PQDs) in polar solvents such as water, seriously hinders their practical application. Herein, 5‐Bromovaleric acid (BVA) is used to replace oleic acid (OA), the most common surface ligand in CsPbX3 PQDs synthesis. Under the synergic action of oleylamine (OLA), CsPbX3 PQDs with high water stability can be synthesized directly in water. Because the carboxyl ligands provided by BVA, and the long chain amines provided by OLA formed hydrophobic shells on the surface of CsPbBr3 PQDs, the obtained CsPbBr3 PQDs still has high luminescence intensity and photoluminescence quantum yield after being dispersed in water for several days, and the luminescence peak is always maintained at 518 nm. In contrast, the luminescence intensity of CsPbBr3 PQDs synthesized with OA and OLA is <1% of the initial intensity after only 30 min. CsPbCl3 and CsPbI3 PQDs synthesized directly in water by this method also show high water stability. In this study, for the first time the synthesis method of CsPbX3 PQDs with high water stability using BVA/OLA as surface ligands is proposed, which provides an effective way to explore the synthesis of PQDs that can maintain stability in water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call