Abstract

Titanium and some of its alloys are widely used as load-bearing implant materials. In particular, titanium-zirconium (Ti-Zr) alloys have a high potential for biomedical applications due to the excellent biocompatibility of both Ti and Zr. Nevertheless, the surfaces of the Ti-Zr alloys need to be modified to provide the implant material’s bioactivity. In the present study, an alkali-heat (AH) treatment process followed by the soaking in simulated body fluid (SBF) was attempted for the preparation of calcium phosphate (CaP) coatings on the surface of the TiZr alloy. Phase transformation, surface morphology, and interfacial microstructure were investigated using scanning electron microscope (SEM) with an energy-dispersive electron probe X-ray analyser (EDS). The results indicate that the AH treatment produced a nano-porous bioactive sodium titanate / zirconate hydrogel surface layer which induced the deposition of a Ca-P layer during soaking in the SBF. This Ca-P layer on the TiZr alloy surface can be expected to bond to the surrounding bones directly after implantation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call