Abstract

Selective laser melting used in manufacturing custom-made titanium implants becomes more popular. In view of the important role played by osteoclasts in peri-implant bone resorption and osseointegration, we modified selective laser melting-manufactured titanium surfaces using sandblasting/alkali-heating and sandblasting/acid-etching, and investigated their effect on osteoclast differentiation as well as their underlying mechanisms. The properties of the surfaces, including elements, roughness, wettability and topography, were analyzed. We evaluated the proliferation and morphology of primary mouse bone marrow-derived monocytes, as well as induced osteoclasts derived from bone marrow-derived monocytes, on samples. Then, osteoclast differentiation was determined by the tartrate-resistant acid phosphatase activity assay, calcitonin receptors immunofluorescence staining and the expression of osteoclast-related genes. The results showed that sandblasting/alkali-heating established nanonet structure with the lowest water contact angle, and both sandblasting/alkali-heating and sandblasting/acid-etching significantly decreased surface roughness and heterogeneity compared with selective laser melting. Surface modifications of selective laser melting-produced titanium altered bone marrow-derived monocyte morphology and suppressed bone marrow-derived monocyte proliferation and osteoclastogenesis in vitro (sandblasting/alkali-heating>sandblasting/acid-etching>selective laser melting). These surface modifications reduced the activation of extracellular signal-regulated kinase and c-Jun N-terminal kinases compared to native-selective laser melting. Sandblasting/alkali-heating additionally blocked tumor necrosis factor receptor-associated factor 6 recruitment. The results suggested that sandblasting/alkali-heating and sandblasting/acid-etching modifications on selective laser melting titanium could inhibit osteoclast differentiation through suppressing extracellular signal-regulated kinase and c-Jun N-terminal kinase phosphorylation in mitogen-activated protein kinase signaling pathway and provide a promising technique which might reduce peri-implant bone resorption for optimizing native-selective laser melting implants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.