Abstract
AbstractTetrafluoroethylene–perfluoroalkyl vinylether copolymer (PFA) sheet surfaces were modified with argon, helium, oxygen, and hydrogen plasmas. How the four plasmas modified the PFA sheet surfaces was investigated. All plasmas modified the PFA surfaces and at the same time initiated degradation of the PFA polymer chains. The balance between modification and degradation was strongly influenced by the magnitude of the discharge current in the plasmas. Efficiency of the plasmas in modification was hydrogen plasma > oxygen plasma > argon plasma > helium plasma. The modification involved defluorination of CF2 carbons into CHF and CH2 carbons and oxidation into OCH2, OCHF, and OCF2 groups. The surface‐modification technique (a combination of hydrogen plasma treatment and silane coupling treatment) proposed in this study was applied for copper metallization of the PFA surface. The utility of the technique was confirmed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1087–1097, 2002
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.