Abstract

Straight-stranded anatase TiO2 nanotubes were produced by anodic oxidation on a pure titanium substrate in an aqueous solution containing a 0.45 wt % NaF electrolyte (pH 4.3 fixed). The average length of the TiO2 nanotubes was approximately 3 μm, which had an effect on the level of dye adsorption in the dye-sensitized solar cells. The anodic TiO2 nanotubes were applied as a working electrode in a solid-state dye-sensitized solar cell. An approximately 1 nm ZnO shell was coated on the TiO2 nanotube to improve the open-circuit voltage (Voc) and conversion efficiency of the solar cell, and to retard any back reaction. Although the Voc and short-circuit current (Jsc) of the cell were improved, there was a low fill factor as a result of the formation of a thick TiO2 barrier layer in the anodic TiO2/Ti substrate. A parameter on the degradation of fill factor (37%) is related to the formation of a thick TiO2 barrier layer in the anodic TiO2/Ti substrate interface. A hydrogen peroxide treatment was performed in an attempt to narrow the TiO2 barrier layer. This treatment was found to influence not only fill factor (37−49%) but also the conversion efficiency (0.704−0.906%) of the cell by eliminating the remnant after anodic reaction and barrier narrowing through an etching effect. This result was confirmed by X-ray photoelectron spectroscopy (XPS) and photocurrent-voltage measurements. The longer electron lifetime on the ZnO coated TiO2 film was measured by the open-circuit voltage decay. The improvement in the electron lifetime from the thin ZnO coating affects the number of electrons collected on the Ti substrate and the retardation of charge recombination. Therefore, the ZnO coating on the TiO2 nanotube film improves the efficiency of dye-sensitized TiO2 solar cells from the extended Voc from ZnO coating confirmed by the Mott−Schottky plots and the increased Jsc through the inhibition of charge recombination confirmed by IPCE measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call