Abstract

Surface carboxyl groups were formed during the 60Co γ-ray irradiation of poly(tetrafluoroethylene) (PTFE) in air. Fourier transform infrared spectroscopy enables the detection of surface carboxyl groups. The contact angles were used to calculate the dispersive and polar components of the surface free energy according to a two-liquid method. The γ-ray irradiation of PTFE mainly caused degradation of the polymer. The concentration of carboxyl groups, the wettability, the friction, and the dispersive and polar components of the surface energy and the crystallinity on PTFE surface were increased, while the particle size of PTFE decreased with increasing irradiation dose. A highly modified PTFE was used to reduce the aqueous liquid repellent properties of PTFE. A 20 kGy dose for modified PTFE surface was suitable in air additivity in antifriction, anticorrosion, antifouling, lubrication, and noise reduction coatings. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 435–441, 1998

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.