Abstract

The immobilization of a thiophene-based tripodal ligand, with a donor sulfur, on the surface of an epoxide group containing a silica gel phase for the synthesis of a newly functionalized material based on porous silica-bound bi-thiophene tripodal ligand (SGBT) is described. The modified silica surface was characterized by 13C NMR of a solid sample, elemental analysis, and infrared spectra. This new material was also studied and evaluated by determination of the surface area using the BET equation, the adsorption and desorption capability using the isotherm of nitrogen and BJH pore sizes, respectively. The target material exhibits good thermal stability as determined by thermogravimetry curves. The synthesized material was utilized in column and batch methods for adsorption of Hg2+, Cd2+, Pb2+, Cu2+, Zn2+, K+, Na+, and Li+, and the material exhibits an affinity only towards toxic heavy metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.