Abstract

Surface modification of H2 plasma-pretreated poly(tetrafluoroethylene) (PTFE) films, either by plasma polymerization and deposition of GMA, or by UV-induced graft copolymerization with glycidyl methacrylate (GMA), was carried out for adhesion enhancement with the electrolesslydeposited copper. XPS and FTIR results revealed that the epoxide groups in the plasma-polymerized GMA (pp-GMA) layer had been preserved to various extents, depending on the glow discharge conditions. The T-peel adhesion test results showed that the adhesion strengths of the electrolesslydeposited copper on both the pp-GMA modified PTFE (pp-GMA-PTFE) film and the GMA graftcopolymerized PTFE (GMA-g-PTFE) film were much higher than that of the electrolessly-deposited copper on the pristine or the H2 plasma-treated PTFE film. The high adhesion strength between the electrolessly-deposited copper and the surface-modified PTFE film was attributed to the fact that the plasma-polymerized and the UV graft-copolymerized GMA chains were covalently tethered on the H2 plasma-pretreated PTFE surface, as well as the fact that these GMA chains were spatially and interactively distributed into the copper matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call