Abstract

A surface of thin square polytetrafluoroethylene (PTFE) samples (1 × 1 × 0.2 cm3) was irradiated with Ar+ at 1 keV with varying ion dose from 5 × 1014 to 1 × 1017 ions/cm2 with and without an oxygen environment. The irradiated surface of the samples was examined by scanning electron microscopy (SEM) for surface textural changes and x-ray photoelectron spectrometry (XPS) for changes in chemical structure. A wettability test was conducted on the irradiated surface of PTFE samples by water droplets. A Scotch ™ tape adhesion test, after a thin film of Cu or Al was evaporated on the irradiated surface, and a tensile test after irradiated samples were glued to sample holders by an adhesive glue (Crystal Bond) was also run. The SEM micrographs showed increasing roughness with fiber forest-like texture with increasing ion dose. The Ar+ with an O2 environment produced finer and denser fiber forest-like texture than that without O2. The high-resolution XPS spectra showed decreased intensity of the F1s peak and formation of the O1s peak when irradiated with the O2 environment. The increase of the O1s peak may be attributed to the reaction of oxygen atoms and the free radicals created by Ar+ bombardment. The wettability of water droplets on the irradiated surfaces was found to be inversely proportional to the surface roughness. Adhesion tests were conducted on 2000 Å thick Al or Cu film. Full detachment of the metal films was observed when PTFE samples were not modified. Partial detachment of the Al film occurred when PTFE was irradiated without the O2 environment, regardless of ion dose. No detachment of the film occurred when PTFE was irradiated with the O2 environment with the ion dose exceeding 1 × 1016 ions/cm2. Partial detachment of Cu film was observed with or without the O2 environment when the ion dose was 5 × 1014 ions/cm2. No detachment occurred with or without the O2 environment when the ion dose was 1 × 1015 ions/cm2 or greater. The tensile test showed that adhesion of an adhesive cement (Crystal Bond) to the irradiated PTFE samples increased significantly with increasing ion dose up to 1 × 1016 ions/cm2. Possible mechanisms for the improved adhesion are given. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1913–1921, 1997

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call