Abstract

Porous hydrophobic polypropylene (PP) membranes were subjected to the surface modification by the γ-ray induced graft copolymerization with hydrophilic 2-hydroxyethyl methacrylate (HEMA). The structural changes and surface morphologies of the modified PP membranes were characterized by a Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA) and field emission scanning electron microscopy (FE-SEM). Peroxides produced from γ-ray irradiation were determined by a 1,1-diphenyl-2-picryl hydrazyl (DPPH) method and the surface hydrophilicities of membranes were measured by a static contact angle measurement. The contact angle of the modified membranes reduced with the degree of grafting (DG) of HEMA onto the membrane surface, and it decreased up to about half of that before modification. The permeation behaviors of all membranes were investigated by a bovine serum albumin (BSA) filtration experiment. As a result, the DG of the modified membrane increased with the reaction time. However, in the case of irradiation dosage it showed the maximum value at 20 kGy. Also, the modified membrane showed a higher solution flux, lower BSA adsorption, and the better flux recovery after cleaning than that of the unmodified membrane. Particularly, 40.6% grafted membrane showed a two-fold increase in a BSA solution flux, 62% reduction in total fouling and three-fold increase in flux recovery after chemical cleaning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.