Abstract
ABSTRACTIn this work, the redox‐initiated graft polymerization of acrylic acid (AA) onto the surface of polyamide thin film composite membranes has been carried out to enhance membrane separation and antifouling properties. The membrane surface characteristics were determined through the attenuated total reflection Fourier transform infrared spectra, scanning electron microscopy, atomic force microscopy, and water contact angles. The membrane separation performance was evaluated through membrane flux and rejection of some organic compounds such as reactive red dye (RR261), humic acid, and bovine serum albumin in aqueous feed solutions. The experimental results indicated that the membrane surfaces became more hydrophilic and smoother after grafting of AA. The modified membranes have a better separation performance with a significant enhancement of flux at a great retention. The fouling resistance of the modified membranes is also clearly improved with the higher maintained flux ratio and the lower irreversible fouling factor compared to the unmodified one. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45110.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.