Abstract

AbstractFouling is the major obstacle in membrane processes applied in water and wastewater treatment. To improve the antifouling characteristics of PPHFMMs in an SMBR for wastewater treatment, the PPHFMMs were surface‐modified by O2 low temperature plasma treatment. Structural and morphological changes on the membrane surface were characterized by XPS and FE‐SEM. The change of surface wettability was monitored by contact angle measurements. Results of XPS clearly indicated that the plasma treatment introduced oxygen containing polar groups on the membrane surface. The static water contact angle of the modified membrane reduced obviously with the increase of plasma treatment time. The relative pure water flux for the modified membranes increased with plasma treatment time up to 1 min, then it decreased with further increase of plasma treatment time. Decreases in the tensile strength and the tensile elongation at break of the modified membranes were also observed. To assess the relation between the plasma treatment and the membrane fouling in an SMBR, filtration for activated sludge was carried out by using synthetic wastewater. After continuous operation in the SMBR for about 75 h, flux recovery were 8.7 and 12.3%, reduction of flux were 91.6 and 87.4% for the nascent and O2 plasma treated PPHFMM for 1 min, relative flux ratio for O2 plasma treated PPHFMM for 1 min was 49.9% higher than that of the nascent PPHFMM.magnified image

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.