Abstract

The object of this study was to develop a highly porous scaffold to be used in regeneration of blood vessels, nerves, and other hollow tissues with small openings. Using the phase-inversion method and a mixture of water and methanol as a coagulating agent, we prepared highly porous flat membranes from poly(L: -lactic acid) (PLLA) with numerous pores both on the surface and in the interior of the membranes. Chinese hamster ovary (CHO) cells were cultured on the membranes to evaluate initial cell adhesion, cell proliferation, and cell morphology. Adhesion of CHO cells to PLLA was poor: the cells adhered at approximately half the rate observed with a tissue culture polystyrene dish (TCPS). In contrast, adhesion of cells to PLLA treated with a low-temperature oxygen plasma was good; the adhesion rate was the same as that on TCPS. The rate of cell proliferation on the treated membranes was no different from that on the nontreated membranes, but cell morphologies were quite different. The cells on the nontreated membranes were small and round and proliferated separately from one another. In contrast, the cells on the plasma-treated membranes proliferated in close contact with other cells, spreading out extensively in sheet-like formations. Since the plasma treatment not only accelerated cell adhesion but also enabled cells to proliferate in the form of sheets resembling biological tissue, we believe that oxygen-plasma treatment is extremely effective for modifying surfaces of materials used for tissue regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.