Abstract
Surface modification of poly(ethylene terephthalate) (PET) film was performed by surface hydrolysis and layer-by-layer (LBL) assembly followed a mechanism of electrostatic adsorption of oppositely charged polymers, exemplified with chitosan and chondroitin sulfate (CS). Hydrolysis of PET in concentrated alkaline solution produced a carboxyl-enriched surface. The changes of weight loss and surface chemistry, morphology and wettability were monitored and verified by UV–vis spectroscopy, atomic force microscopy (AFM) and water contact angle. Assembly of positively charged chitosan and negatively charged CS was then conducted in a LBL manner to create multilayers on the hydrolyzed PET film. The process of layer growth and oscillation of surface wettability were monitored by UV–vis spectroscopy and water contact angle measurement, respectively. In vitro cell culture revealed that the adherence of endothelial cells was significantly enhanced on the biomacromolecules-modified PET film with preserved endothelial cell function, in particular on those assembled with larger number of chitosan/CS layers. However, with regard to cell proliferation and viability properties after cultured for 4 days, minor difference was determined between the modified and the unmodified PET films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.