Abstract

Abstract Bimetallic catalysts (Pd–Ni and Rh–Ni) were prepared by co-impregnation and sequential impregnation methods to investigate catalytic performance in oxidative steam reforming of methane. These bimetallic catalysts gave high methane conversion even at low W / F such as 0.07 g h/mol. The thermographical observation clearly demonstrated that the catalyst bed temperature was strongly dependent on the preparation method. The bimetallic catalyst prepared from the sequential impregnation method exhibited much higher resistance to hot-spot formation in oxidative reforming of methane. In particular, Pd–Ni catalysts prepared by the sequential impregnation method showed higher resistance to hot-spot formation than monometallic Pd and Ni catalysts, and this can be a synergetic effect of Pd and Ni. Temperature-programmed reduction (TPR) with H 2 revealed that the addition of Pd or Rh by a sequential impregnation method greatly promoted the reduction of Ni species. Extended X-ray absorption fine structure (EXAFS) analysis confirmed the formation of Pd–Ni alloy and the preferential location of Pd atoms on the surface of the bimetallic particles over the Pd/Ni catalysts. Surface modification of Ni with Pd by sequential impregnation is effective for promotion of the activity and suppression of hot-spot formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.