Abstract

AbstractAs a biopolymer with high mechanical strength, nanocellulose was generally considered as a green filler for reinforcing polymer. In this study, nanocrystalline cellulose (NCC) isolated from softwood pulp was successfully modified by cetyltrimethyl ammonium bromide (CTMAB), a cationic surfactant, and the modified nanocrystalline cellulose (m‐NCC) was used to reinforce natural rubber (NR). In this composite architecture, it was found that when the filler content was 5 or 10 phr, the surface modification of NCC improved the dispersion state of NCC in NR matrix and the interfacial interaction between NR and NCC. Therefore, the NR/m‐NCC composites exhibited outstanding mechanical properties, and its tensile strength, elongation at break and tear strength was increased by 132.8, 20, and 66.1%, respectively, compared to pristine NR composites. Besides, the modified NCC could accelerate the vulcanization and improve wet‐skid resistance and aging resistance of NR composites. It is envisioned that the modified NCC has the potential to be generalized to manufacturing other polymer matrix composites strengthened with nanocellulose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call