Abstract

Rampant antimicrobial resistance calls for innovative strategies to effectively control bacterial infections, enhance antibacterial efficacy, minimize side effects, and protect existing antibiotics in the market. Therefore, to enhance the delivery of antibiotics and increase their bioavailability and accumulation at the site of infection, the surfaces of nano-drug delivery systems have been diversely modified. This strategy applies various covalent and non-covalent techniques to introduce specific coating materials that have been found to be effective against various sensitive and resistant microorganisms. In this review, we discuss the techniques of surface modification of nanocarriers loaded with antibacterial agents. Furthermore, saccharides, polymers, peptides, antibiotics, enzymes and cell membranes coatings that have been used for surface functionalization of nano-drug delivery systems are described, emphasizing current approaches for enhancing delivery, bioavailability, and efficacy of surface-modified antibacterial nanocarriers at infection sites. This article offers a critical overview of the potential of surface-modified antibacterial nanocarriers to overcome the limitations of conventional antibiotics in the treatment of bacterial infections. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call