Abstract

ABSTRACTMicrocrystalline cellulose (MCC) was modified by grafting onto its surface ferulic acid, methacryloyl chloride and oleoyl chloride. The efficacy of the chemical modification was confirmed by X‐ray photoelectron spectroscopy. In addition, the size distribution of the cellulosic particles was investigated by optical microscopy and laser granulometry and its hydrophobicity was evaluated using a contact angle method. Finally, to investigate the affinity of modified MCC with a nonpolar polymer and to assess its potential as a biobased reinforcing filler, the modified MCC was compounded into low‐density polyethylene. An organic peroxide, dicumyl peroxide, was added at selected formulations to see if it could further enhance mechanical bonding between the polymer and the particulates. The dispersion was assessed by scanning electron microscopy. Mechanical properties were investigated through tensile testing while the melt rheology of the composites was monitored by small angle oscillatory shear rheology. The acylation modification of the MCC improved the dispersion within LDPE and enhanced the mechanical properties of the composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44348.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.