Abstract

In this paper we report on results of surface modification in several candidate materials for inert matrix fuel hosts (MgAl2O4, MgO and Al2O3) induced by (0.5–5)MeV/amu Kr, Xe and Bi ion bombardment in the fluence range of 2×1010–1012ions/cm2. The size and shape of nanoscale hillock-like defects, each of which was created by the impact of a single ion, have been studied by using atomic force microscopy (AFM) technique. It was found that mean hillock height on sapphire and spinel surfaces depends linearly on the incident electronic stopping power. The hillocks are highest in MgAl2O4, having a lower threshold for the lattice disorder in the bulk material via relaxation of electronic excitations. As a possible reason for the hillocks formation, the plastic deformation due to the defects created by the Coulomb explosion mechanism in the target subsurface layer is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.