Abstract

Hydroxyapatite (HA) has been extensively utilized in the field of biomaterials as a bioactive ceramic. Development of modified-HA by the substitution of Ca ions and OH− groups not only makes its chemical composition similar to that of the natural bone tissue, but also improves the in vitro behavior of commercially synthesized HA. Accordingly, magnesium-fluoridated hydroxyapatite nanoparticles (Mg-FHA NPs) have been recently developed. However, due to the high surface energy of such NPs, they cannot be well dispersed in a biopolymer matrix to prepare a polymer/ceramic composite, which is usually demanded for tissue engineering applications. To overcome this shortcoming, the surface of Mg-FHA NPs was modified using a few well-known natural amino acids as the cost-effective and environment-friendly biomaterials in the present research. L-leucine, L-isoleucine, L-methionine, L-phenylalanine, L-tyrosine and L-valine amino acids were employed as the coupling agents and surface modification of Mg-FHA NPs was carried out by means of sonication technique. The results confirmed that using amino acid molecules led to the uniform dispersion of Mg-FHA NPs in the organic environment by making the surface of NPs hydrophobic, although the length and chemical reactivity of amino acid molecules affected the efficiency of NPs dispersion. The uniform distribution of Mg-FHA NPs could be regarded as a desired condition for polymer/ceramic composite preparation, with high applicability for biomedical purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.