Abstract
Hydroxyapatite was surface-modified by adsorption of nonionic polymers carrying phosphate groups as anchoring groups. A combination of alcohol ethoxylate and alkyl phosphate was also used. The possibility of interfering with early microbial colonization on apatite, mimicking the tooth surface, was investigated using radiolabelledStreptococcus mutans as model bacteria. The polymers, a nonionic cellulose ether and an EO/PO block copolymer based on polyglycerol as starting alcohol, were effective in buffer but gave only limited reduction of bacterial adhesion when the apatite had been pretreated with saliva. A 1∶1 molar mixture of alcohol ethoxylate and alkyl phosphate was effective both with and without saliva, however. Studies with14C-labeled compounds, as well as microelectrophoresis experiments, indicate that an unsymmetrical double layer is formed on the apatite surface with predominantly alkyl phosphate in the inner layer and with alcohol ethoxylate pointing towards the water phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.