Abstract

Risperidone (RIS), one of the typical antipsychotics drugs, originally approved to be used for the mental illness treatment, especially schizophrenia, bipolar disorder, autism and major depression. In the present study, different carbon nanostructures including functionalized multi-walled carbon nanotubes (F-MWCNTs), carbon nanoparticles, nanodiamond-graphite and reduced graphene oxide were employed for modification of the surface of glassy carbon electrode (GCE) for ultrasensitive detection of RIS. The most significant increase in the anodic peak current of RIS was observed on F-MWCNTs-modified electrode (compared to the other modified electrodes and bare GCE). The influence of different experimental parameters such as pH of the buffered solutions, the amount of the modifier and time and potential of the accumulation was optimized by monitoring the LSV responses toward RIS for the selected modified electrode. A wide linear dynamic range of 0.04–7 µM with a low detection limit of 12 nM was obtained. The results exhibit an acceptable performance of the proposed electrode for determination of RIS in the pharmaceutical and clinical preparations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call