Abstract

Gloves made of materials such as latex, nitrile, and polyethylene are the most common types of protective equipment used to prevent cross-contamination and transmission of pathogenic bacteria in the food industry. In this study, we report a surface modification approach involving “fluorinated silica nanoparticles” (FSNs) to improve the protective ability against bacterial contamination of disposable glove surfaces. The bacterial antiadhesive (antifouling) properties of the modified gloves were evaluated with Salmonella Typhimurium LT2 and Staphylococcus aureus at bacterial concentrations of 8.6–9.0 log CFU/mL through the dip-inoculation approach. Bacterial attachment to glove surfaces were enumerated by the pour plating method as well as direct counting via scanning electron microscopy. The bacterial populations of S. Typhimurium LT2 and S. aureus on FSN-coated latex, nitrile and polyethylene gloves was reduced by 1–2 log units in comparison to bare gloves, which already reduce the bacterial attachment to some extent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.