Abstract
This work demonstrates the application of DBD plasma-based exciplex UV technology for surface modification of natural fibres. KrCl* (222 nm) and XeI* (253 nm) exciplex lamps have been developed and characterized in terms of the applied voltage, applied frequency, gas pressure, and absolute UV light intensity. The measured radiated intensities are 2.45 mW/cm2 and 1.91 mW/cm2 for 222 nm and 253 nm exciplex lamps, respectively. The change in physicochemical properties such as tensile strength, weight loss, wettability, surface morphology, and chemical composition, are evaluated using different characterization techniques ̶ like Contact Angle Goniometry, Thermogravimetric Analysis (TGA), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Field Emission Scanning Electron Microscopy (FE-SEM), and Energy Dispersive X-ray (EDX) analysis, etc. The results are compared with untreated fibres to see the effect of different doses of UV222 and UV253 on the different properties of fibres. It is inferred that the exciplex UV222 treated fibres have a higher concentration of different polar groups (− OH, − COOH, etc.). Much improvement in the dyebath ability of the natural fibre is achieved using a 222 nm exciplex light source, which reduces the dye concentration in the textile effluents and improves the dye adhesion to the fibre. It has been found that the fibre's hydrophilicity and dye bath capabilities have improved significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.