Abstract

Although the catalytic pyrolysis of low-density polyethylene (LDPE) to produce light olefin has shown potential industrial application advantages, it has generally suffered when using higher pyrolysis temperatures. In this work, Mg-modified Fe-ZSM-5 was used for catalytic conversion of LDPE to obtain light olefin in a fixed bed reactor. The effects of catalyst types, pyrolysis temperatures, and Mg loading on the yield of light olefin were investigated. The 1 wt% Mg loading slightly improved the yield of light olefin to 38.87 wt% at 395 °C, lowering the temperature of the pyrolysis reaction. We considered that the higher light olefin yield of Fe-Mg-ZSM-5 was attributed to the introduction of Mg, where Mg regulated the surface acidity of the catalyst, inhibited the secondary cracking reaction, and reduced coking during the pyrolysis process. Furthermore, the addition of Mg also dramatically reduced the average particle size of Fe oxides from 40 nm to 10 nm, which is conducive to a lower catalytic reaction temperature. Finally, the spent catalyst could be easily regenerated at the conditions of 600 °C in airflow with a heating rate of 10 °C/min for 1 h, and the light olefin yield remained higher than 36.71 wt% after five cycles, indicating its excellent regeneration performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call