7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1002/polb.10336
Copy DOIPublication Date: Nov 7, 2002 | |
Citations: 27 |
AbstractThe surface modifications of ethylene‐co‐tetrafluoroethylene (ETFE) surfaces by six plasmas (direct H2, Ar, and O2 plasmas and remote H2, Ar, and O2 plasmas) were investigated with two questions in mind: (1) what plasma could effectively modify ETFE surfaces and (2) which of the CF2CF2 and CH2CH2 components in ETFE was selectively modified? The plasma exposure led to a weight loss from the ETFE surfaces and changes in the chemical composition on ETFE surfaces. The weight‐loss rate showed a strong dependence on what plasma was used for the modification. The remote H2 plasma led to the lowest rate of weight loss in the six plasma exposures, and the direct O2 plasma led to the highest rate of weight loss. During exposure to the plasmas, defluorination occurred, and two new C1s components [CH2CHFCH2 and CH2CH(OR)CFx, and CH2CHFCF2, CH2C(O)CFx, and CFxC(O)O] were formed on the modified ETFE surfaces. Defluorination was strongly influenced by what plasma was used for the modification. The remote H2 and Ar plasmas showed high defluorinations of 55 and 51%, respectively. The remote O2 plasma showed a low defluorination of only 25%. Conclusively, the remote H2 and Ar plasma exposure effectively modified ETFE surfaces. With the exposure of these surfaces to the remote H2 plasma, the CF2CF2 component was predominantly modified, rather than the CH2CH2 component. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2871–2882, 2002
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.