Abstract

Surface modification of polypyrrole (PPY), polyaniline (PAN) and poly(3-alkylthiophene) films by ozone was studied by angle-resolved x-ray photoelectron spectroscopy (XPS). In the case of the N-containing polymers, oxidation occurs readily and mainly at the carbon atoms, resulting in the formation of CνO, CξO, COOH and even OνCOOH (especially for PAN) species. The carbon atoms of doped PPY and PAN films are significantly more resistant to ozone oxidation, but the samples suffer some loss of the dopant in the surface region. Ozone treatment does not involve the direct oxidation of the nitrogen heteroatoms to form theνNOx species, even at high extent of carbon oxidation. In addition, a substantial decrease in the intrinsic oxidation state ([ξNν]/[νNHν] ratio) was observed in the 25% deprotonated PPY (DP-PPY) base, the 50% intrinsically oxidized emeraldine (EM) base and the 75% intrinsically oxidized nigraniline (NA) base after ozone treatment and subsequent atmospheric exposure. In the case of the S-containing polymers, ozone treatment results predominantly in the oxidation of sulphur heteroatoms to give rise to the sulphone and peroxide species. The oxidized sulphur species, however, are readily reduced or consumed in a photochemical reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.