Abstract

Tissue-engineered heart valves (TEHVs) are the most promising replacement for heart valve transplantation. Decellularized heart valve (DHV) is one of the most common scaffold materials for TEHVs. In actual clinical applications, the most widely used method for treating DHV is cross-linking it with glutaraldehyde, but this method could cause serious problems such as calcification. In this study, we introduced polyhedral oligomeric silsesquioxane (POSS) nanoparticles into a poly(ethylene glycol) (PEG) hydrogel to prepare a POSS-PEG hybrid hydrogel, and then coated them on the surface of DHV to prepare the composite scaffold. The chemical structures, microscopic morphologies, cell compatibilities, blood compatibilities, and anticalcification properties were further investigated. Experimental results showed that the composite scaffold had good blood compatibility and excellent cell compatibility and could promote cell adhesion and proliferation. In vivo and in vitro anticalcification experiments showed that the introduction of POSS nanoparticles could reduce the degree of calcification significantly and the composite scaffold had obvious anticalcification ability. The DHV surface-coated with the POSS-PEG hybrid hydrogel is an alternative scaffold material with anticalcification potential for an artificial heart valve, which provides an idea for the preparation of TEHVs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call