Abstract
To improve their chemical mechanical polishing (CMP) performance, ceria nanoparticles were surface modified with γ-aminopropyltriethoxysilane (APS) through silanization reaction with their surface hydroxyl group. The compositions, structures and dispersibility of the modified ceria particles were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), laser particle size analyzer, zeta potential measurement and stability test, respectively. The results indicated that APS had been successfully grafted onto the surface of ceria nanoparticles, which led to the modified ceria nanoparticles with better dispersibility and stability than unmodified ceria particles in aqueous fluids. Then, CMP performance of the modified ceria nanoparticles on glass substrate was investigated. Experimental results showed that the modified ceria particles exhibited lower material removal rate (MRR) but much better surface quality than unmodified ceria particles, which may be explained by the hardness reduction of ceria particles, the enhancement of lubrication of the particles and substrate surfaces, and the elimination of the agglomeration among the ceria particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.