Abstract

Nano-sized precipitated silica coated calcium carbonate fillers (PCC-Si) were modified by an alkyl- and a fluoro-alkoxysilane derivative, respectively. PCC-Si surface modification was characterized by elemental analysis, Fourier transform infrared analysis and X-ray photoelectron spectroscopy. The modification conditions used for surface treatment led to a similar grafting density (around 3.2μmolm−2) for the two alkoxysilane derivatives. A significant decrease of filler hydrophilicity was observed after the alkoxysilane treatment. Nanocomposites prepared by melt mixing the modified fillers (10wt.%) with polyvinylidene fluoride (PVDF) depicted no color change, an enhanced filler dispersion state with an homogeneous dispersion of very small filler aggregates (less than 150nm diameter size), an increase of the thermal stability at high temperature and no change of the PVDF crystalline morphology. The oxygen permeability decrease measured on the nanocomposite prepared from the perfluorooctyltriethoxysilane modified filler was in good agreement with Maxwell law. The permeability increase evidenced for the nanocomposite based on the octyltriethoxysilane modified PCC suggested the formation of weak interfaces in this system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.