Abstract

Magnesium alloys such as Mg–Ca and Mg–Zn–Ca are good orthopaedic materials; however their tendency to corrode is high. Herein we utilize selective laser melting (SLM) to modify the surface of these Mg alloys to simultaneously improve the corrosion behaviour and microhardness. The corrosion rate decreased from 2.1 ± 0.2 mm/y to 1.0 ± 0.1 mm/y for the laser-processed Mg–0.6Ca, and from 1.6 ± 0.1 mm/y to 0.7 ± 0.2 mm/y for laser-processed Mg–0.5Zn–0.3Ca. The microhardness increased from 46 ± 1 HV to 56 ± 1 HV for Mg–0.6Ca, and from 47 ± 3 HV to 55 ± 3 HV for Mg–0.5Zn–0.3Ca. In addition, good biocompatibility remained in the laser processed Mg alloys. The improved properties are attributed to laser-induced grain refinement, confined impurity elements, residual stress, and modified surface chemistry. The results demonstrated the potential of SLM as a surface engineering approach for developing advanced biomedical Mg alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.