Abstract
ABSTRACTSurface modification is an important part of fabricating nanoparticles with specific properties and functions. We have designed a dipeptide, which we call NS polypeptide, that consists of four asparagine (N) residues and one serine (S) residue, as a molecule for nanoparticle surface modification. Surface modification of magnetic nanoparticles with the NS polypeptide results in reduction of particle-particle and particle-cell interactions. Here, we describe the surface modification and functionalization of bacterial magnetic particles (BacMPs) by spontaneous integration of temporin L conjugated to NS polypeptide. BacMP membranes were modified temporin L. Furthermore, peptide-modified BacMPs showed high dispersibility in aqueous solution compared to unmodified BacMPs. This surface modification technique may represent a new strategy for reducing non-specific binding of nanoparticles to proteins or cells for use in a variety of protein- or cell-associated applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.