Abstract

Silicone rubber, which is a widely used biomaterial, is often used to make soft liners for permanent denture. Colonization of denture soft lining materials by Candida albicans can result in clinical problems. The aim of this study was to chemically modify the surface of an experimental silicone rubber in order to produce a silicone that was less susceptible to candidal colonization. Surface modification was carried out with the use of argon-plasma bombardment followed by silane treatment, which caused the incorporation of either hydrophilic or hydrophobic functional groups onto the surface. Changes in water contact angles and chemical analysis of the materials with scanning ion mass spectroscopy confirmed surface changes. In vitro assays were carried out using C. albicans to measure levels of adherence to the surface-modified silicone after 1 h. C. albicans exhibited very low adherence to all silane-treated surfaces, whether hydrophobic or hydrophilic. This led to the conclusion that incorporated long-chain functional groups were inhibiting the adherence of the yeast, possibly by the formation of a barrier between the surface of the material and the yeast. In conclusion, silane surface treatment of an experimental silicone rubber has been successful in reducing candidal adherence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call