Abstract
There is a growing interest in the fabrication of membranes and packaging materials from natural resources for a sustainable society. A regenerated cellulose (RC) film composed solely of cellulose has outstanding advantages including biodegradability, transparency, mechanical strength, and thermal stability. To expand the application of the RC film, various surface modification methods have been proposed. However, conventional chemical methods have disadvantages such as environmental burden and difficulty in controlling the reaction. In this work, low-pressure plasma treatment, a green, solvent-free, and easily controllable approach, was performed for surface modification of the RC film. The effects of three different plasma species (O2, N2, and CF4) and treatment conditions on the surface properties of RC films were investigated based on water contact angle measurements, chemical composition analysis, and surface topography. O2 and N2 plasma treatment slightly enhanced the surface wettability of RC films due to the etching by the plasma reactive species and the formation of new hydrophilic functional groups. In CF4 plasma treatments, the hydrophobic surface with a contact angle of 120.6° was obtained in a short treatment time (60 s) owing to the deposition of fluorocarbon groups on the surface. However, the treated surface in a longer reaction time resulted in increased wettability due to the diffusion and degradation of fluorine-containing bonds. The new insights could be valuable for further studies of surface modification and functionalization of RC films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.