Abstract

The graphite fiber fabric (GFF), modified using different methods, was studied as an anode for enhanced bioelectrochemical methane production. The electrical conductivity of the GFF was significantly improved by loading the multiwall carbon nanotube (MWCNT) on the GFF surface via electrophoretic deposition (EPD) or the sonication method. The surface-modified GFF anodes were obtained by further processing to form a scaffold layer of exfoliated graphite (EG) and the MWCNT mixture using coal tar pitch or epoxy as the binder. In the batch bioelectrochemical reactor, the lag time for the GFF control anode was about 15.5 days in the methane production during the enrichment of electrochemically active bacteria (EAB). Interestingly, the lag time for the modified anode was increased more by the EPD treatment (20.8–23.3 days) than by the sonication (17.1–18.4 days) and was increased more by the epoxy binder (EB) (18.4–23.3 days) than by the coal tar pitch binder (CB) (17.1–20.8 days). However, the accumulated metha...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.