Abstract

Inorganic lead halide perovskite quantum dots (iLHP-QDs) have recently been used in the photocatalytic reaction. However, the factors that influence the photocatalytic performance of the iLHP-QDs have not been fully investigated. Herein, we synthesized a series of iLHP-QDs with varied halide ratios (CsPbX3, X = I, I0.67Br0.33, I0.5Br0.5, I0.33Br0.67, Br) and studied their influence on the photocatalytic performance by monitoring the polymerization of 2,2',5',2″-ter-3,4-ethylenedioxythiophene (TerEDOT). The CsPbI3 QDs showed the best performance owing to their narrow band gap and low exciton binding energy. Moreover, the photocatalytic performance of the iLHP-QDs could be simply improved by being treated with methyl acetate, which can be attributed to the replacement of the oleic acid by the short acetate acid and the introduction of the traps on the surface of QDs in the post-treatment. These results could help design a more efficient photocatalytic system and further promote the application of iLHP-QDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call