Abstract

The poor interfacial bonding and resultant agglomeration of nanoparticles in polymer-based composite severely deteriorated their reinforcement effect. In this work, MgO nanoparticles (MgO-NPs) were surface modified with Poly (L-lactic acid-co-malic acid) (PLMA) to improve the interfacial compatibility in Poly-l-lactic acid (PLLA) scaffold manufactured by selective laser sintering. PLMA possess a hydrophilic end with carboxyl group (comes from the malic acid) and an l-lactic acid chain. On one hand, the carboxyl group was able to form hydrogen bonding with the hydroxyl groups of MgO-NPs. On the other hand, the l-lactic acid chain containing the hydroxyl groups could react with the carboxyl group of PLLA. Results revealed that the scaffold exhibited significantly enhanced compressive strength and modulus by 47.1% and 237.7%, respectively, which could be ascribed to the enhanced interfacial bonding between PLLA and MgO-NPs, as well as the rigid particle reinforcement. In addition, the scaffold was favorable for cell adhesion, proliferation and differentiation, owing to the improved hydrophilic and suitable pH environment. It was suggested the scaffold was a promising material for bone repair application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.