Abstract

Gradually increasing power transmission voltage requires an improved high-voltage capability of polymeric insulating materials. Surface modification emerges as an easily accessible approach in enhancing breakdown and flashover performances due to the widely acknowledged modification of space-charge behaviors. However, as oxidation and fluorination essentially react within a limited depth of 2 μm underneath polymer surfaces, the nature of such bulk space-charge modulation remains a controversial issue, and further investigation is needed to realize enhancement of insulating performance. In this work, the surface oxidation-dependent space-charge accumulation in LDPE film was found to be dominated by an electrode/polymer interfacial barrier, but not by the generation of bulk charge traps. Through quantitative investigation of space-charge distributions along with induced electric field distortion, the functions of surface oxidation on the interfacial barrier of a typical dielectric polymer, LDPE, is discussed and linked to space-charge behaviors. As the mechanism of surface modification on space-charge behaviors is herein proposed, space-charge accumulation can be effectively modified by selecting an appropriate surface modification method, which consequentially benefits breakdown and flashover performances of polymeric insulating films for high-voltage applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.