Abstract

Samples prepared from steels F82H and EUROFER97 were irradiated with 20 MeV W ions at 300 K to 0.54 displacements per atom at the damage peak. Damaged and undamaged samples were exposed at elevated temperatures both to deuterium plasma at ion energies of 60 and 200 eV to a fluence of ≈1026 D m−2 and to D2 gas at a pressure of 100 kPa. The surface modification after plasma exposure was examined by scanning electron microscopy and Rutherford backscattering spectroscopy. Deuterium depth profiles were determined by the D(3He, p)4He nuclear reaction. In damaged steels loaded with deuterium, deuterium decorates the damage profile and the D concentration decreases with increasing temperature. After exposure of the F82H steel to the D plasma W-enriched near-surface layers are formed. The effective concentration of W in the near-surface steel layer depends on plasma exposure conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.