Abstract
Based on first-principles calculations of surface diffusion barriers, we show that on a compressive Ge(001) surface the diffusivity of Ge is 10(2)-10(3) times higher than that of Si in the temperature range of 300 to 900 K, while on a tensile surface, the two diffusivities are comparable. Consequently, the growth of a compressive SiGe film is rather different from that of a tensile film. The diffusion disparity between Si and Ge is also greatly enhanced on the strained Ge islands compared to that on the Ge wetting layer on Si(001), explaining the experimental observation of Si enrichment in the wetting layer relative to that in the islands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.