Abstract

In the present study, the effect of high current pulsed electron beam (HCPEB) surface treatments on the microstructure, composition, stress states and properties of a Mg-8Gd-3Y-0.5Zr alloy has been investigated. The surface layers showed different features in microstructure and residual stress states under different number of pulses. Such a variation is essentially due to the different level of the dissolution of β-Mg5(Gd,Y) particles in remelted layers and the impact from thermal stresses generated by HCPEB treatments. The results have shown that, after 5 pulses of HCPEB treatment, maximum hardness in the surface layer of the sample was increased by 35% and the corrosion rate in 3.5 wt% NaCl water solution was reduced by 30% as compared with those of the untreated sample. The formation of nano structured cells of Mg-RE solid solution and β-Mg5(Gd,Y) nano precipitates, together with the residual compressive stress in the surface layer of the 5 pulsed sample account for the increased microhardness and improved corrosion resistance of the HCPEB treated Mg-8Gd-3Y-0.5Zr Mg alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call