Abstract

BackgroundBacterial surface contamination contributes to transmission of nosocomial infections. Chemical cleansers used to control surface contamination are often toxic and incorrectly implemented. Additional non-toxic strategies should be combined with regular cleanings to mitigate risks of human error and further decrease rates of nosocomial infections. The Sharklet micropattern (MP), inspired by shark skin, is an effective tool for reducing bacterial load on surfaces without toxic additives. The studies presented here were carried out to investigate the MP surfaces capability to reduce colonization of methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) compared to smooth control surfaces.MethodsThe MP and smooth surfaces produced in acrylic film were compared for remaining bacterial contamination and colonization following inoculation. Direct sampling of surfaces was carried out after inoculation by immersion, spray, and/or touch methods. Ultimately, a combination assay was developed to assess bacterial contamination after touch transfer inoculation combined with drying (persistence) to mimic common environmental contamination scenarios in the clinic or hospital environment. The combination transfer and persistence assay was then used to test antimicrobial copper beside the MP for the ability to reduce MSSA and MRSA challenge.ResultsThe MP reduced bacterial contamination with log reductions ranging from 87-99% (LR = 0.90-2.18; p < 0.05) compared to smooth control surfaces. The MP was more effective than the 99.9% pure copper alloy C11000 at reducing surface contamination of S. aureus (MSSA and MRSA) through transfer and persistence of bacteria. The MP reduced MSSA by as much as 97% (LR = 1.54; p < 0.01) and MRSA by as much as 94% (LR = 1.26; p < 0.005) compared to smooth controls. Antimicrobial copper had no significant effect on MSSA contamination, but reduced MRSA contamination by 80% (LR = 0.70; p < 0.005).ConclusionThe assays developed in this study mimic hospital environmental contamination events to demonstrate the performance of a MP to limit contamination under multiple conditions. Antimicrobial copper has been implemented in hospital room studies to evaluate its impact on nosocomial infections and a decrease in HAI rate was shown. Similar implementation of the MP has potential to reduce the incidence of HAIs although future clinical studies will be necessary to validate the MP’s true impact.

Highlights

  • Bacterial surface contamination contributes to transmission of nosocomial infections

  • Growth conditions, and inoculums Bacterial strains used for testing included methicillinsensitive Staphylococcus aureus (MSSA; ATCC 6538) or methicillin-resistant S. aureus (MRSA; ATCC 43300), Each were grown in a shaking incubator at 37°C for 18–24 h in tryptic soy broth (TSB) media (Hardy Diagnostics, Santa Maria, CA)

  • methicillin-sensitive Staphylococcus aureus (MSSA) and MRSA demonstrated significantly reduced attachment to the MP surfaces compared to smooth controls, with 99% (LR = 2.18; p < 0.001) and 98% (LR = 1.64; p < 0.001) reductions of each of these organisms, respectively (Figure 2)

Read more

Summary

Introduction

Bacterial surface contamination contributes to transmission of nosocomial infections. Healthcare infection control guidelines from the Centers for Disease Control and Prevention (CDC) emphasize the importance of cleaning and disinfecting “high-touch surfaces” and monitoring these activities to maintain a sanitary environment in the hospital [21]. These documents reflect an evolving mindset that patient area environmental cleanliness in healthcare settings plays a significant role in infection prevention and control. Despite the increased attention to environmental hygiene, recent studies have shown that as few as 40% of near patient surfaces are being cleaned in accordance with existing hospital policies [6,10,16]. While the results of the copper trials may require further validation [25,26], the data from these studies indicate that sustained surface contamination reduction may offer a clinical benefit

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.