Abstract

The wear behavior of ultrahigh molecular weight polyethylene (UHMWPE) is critical to the success of total joint replacements. Recent attempts to modify the wear behavior of UHMWPE by processing, in particular, crosslinking UHMWPE have shown promise to increase wear resistance, but concerns persist regarding other mechanical properties. It is also unclear what specific surface mechanical properties govern the wear resistance seen in these materials. The goal of this study was to demonstrate a custom-built surface mechanical test system and method that measures the micromechanical response of microtomed UHMWPE surfaces to depth-sensing microindentation tests. The surface structure of these UHMWPE materials was also examined using scanning electron microscopy and atomic force microscopy. A custom designed microindentation test system assessed the microindentation behavior of three UHMWPE resins: 1. Hylamertrade mark, 2. GUR-1020 CMS, and 3. Marathontrade mark-a lightly crosslinked material. The effects of material and indentation depth were studied. Microindentation tests were performed with indentation depths ranging from 2 to 45 microm. Four different measurements of surface micromechanical behavior were obtained including the surface modulus, microhardness, hysteresis energy (irreversible work done to the sample per unit cycle) and its associated energy dissipation factor, and loading slope. Statistically significant differences in each of these parameters were found for each material. Generally, Hylamer had the largest values for these parameters, followed by the GUR resin and then the Marathon. Surface modulus was independent of depth of testing and found to be 651 MPa for Marathon, 738 MPa for GUR, and 1015 MPa for Hylamer (Modulus for bulk UHMWPE is 540 MPa for Hylamer, 620 for GUR, and 1380 for Hylamer). The microhardness varied between 67 and 162 MPa depending on material and depth of testing. Surface structural characterization shows that the microtoming process for surface preparation generated distinct surface features that varied between materials. Intermittent drawn ribbons of polymer with oriented crystals were observed in both scanning electron microscopy and atomic force microscopy. The surface density and size of these features were characteristic of the materials with the Hylamer having the fewest, but largest ribbons, followed by GUR and then Marathon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call