Abstract

This study presents the primary design, fabrication process and device measurement of a Capacitive Micromachined Ultrasonic Transducer (CMUT) for underwater acoustic imaging. Theoretical analysis and computer simulations of the CMUT are performed. The CMUT fabrication uses the full surface micromachining techniques of the Micro Electro Mechanical System (MEMS). These techniques are Low Pressure Chemical Vapor Deposition (LPCVD), photolithography, Reactive Ion Etching System (RIE) dry etching, sacrificial layer wet etching, metal thermal evaporation coating and Plasma‐Enhanced Chemical Vapor Deposition (PECVD). Several important issues regarding fabrication are discussed. The measured input impedance of the CMUT is in agreement with the theoretical prediction. The received signal has a 35 dB signal‐to‐noise ratio indicating that practical applications of the immersion CMUT are feasible and that the radiation pattern measurement of the CMUT array has good beamforming characteristics for underwater imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.