Abstract
We have studied the surface micelle formation of polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) at the air-water interface. A series of four PS-b-P2VPs were synthesized by anionic polymerization, keeping the PS block length constant (28 kg/mol) and varying the P2VP block length (1, 11, 28, or 59 kg/mol). The surface pressure-area (π-A) isotherms were measured and the surface morphology was studied by atomic force microscopy (AFM) after Langmuir-Blodgett film deposition onto silicon wafers. At low surface pressure, the hydrophobic PS blocks aggregate to form pancake-like micelle cores and the hydrophilic P2VP block chains spread on the water surface to form a corona-like monolayer. The surface area occupied by a block copolymer is proportional to the molecular weight of the P2VP block and identical to the surface area occupied by a homo-P2VP. It indicates that the entire surface is covered by the P2VP monolayer and the PS micelle cores lie on the P2VP monolayer. As the surface pressure is increased, the π-A isotherm shows a transition region where the surface pressure does not change much with the film compression. In this transition region, which displays high compressibility, the P2VP blocks restructure from the monolayer and spread at the air-water interface. After the transition, the Langmuir film becomes much less compressible. In this high-surface-pressure regime, the PS cores cover practically the entire surface area, as observed by AFM and the limiting area of the film. All the diblock copolymers formed circular micelles, except for the block copolymer having a very short P2VP block (1 kg/mol), which formed large, non-uniform PS aggregates. By mixing with the block copolymer having a longer P2VP block (11 kg/mol), we observed rod-shaped micelles, which indicates that the morphology of the surfaces micelles can be controlled by adjusting the average composition of block copolymers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.